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Abstract: Bioacoustic monitoring with machine learning (ML) models can provide valuable 14 

insights for informed decision-making in conservation efforts. In this study, the team built deep 15 

convolutional neural networks to analyze field recordings and classify calls of Yellow-vented 16 

warbler (Phylloscopus cantator) and Rufous-throated wren-babbler (Spelaeornis caudatus), both 17 

of which are regionally rare in Nepal. Data augmentation techniques for calls of the two bird 18 

species were utilized to effectively increase the size of the training set and thus boost model 19 

performance. Nepali ornithologists were engaged in iterative data labeling from field recordings, 20 

leveraging ML technology in conjunction with expert manual labeling and verification. The 21 

model output provides insights of species activity and abundance throughout 2018-2019 in 22 

multiple ecosystems along an elevational transect in the Barun River Valley, Nepal. The results 23 

of this study may help conservationists better understand species distribution, behavior, diversity, 24 

and habitat preference. Additionally, the results provide baseline data to quantify future changes 25 

mailto:jlavista@microsoft.com
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due to habitat disruption or climate change. This modeling methodology and its framework can 26 

be easily adopted by other acoustic classification problems. 27 

Keywords: Deep learning, Convolutional Neural Networks (CNN), Bioacoustic classification, 28 

Transfer learning, Species population, Presence survey 29 

I. Introduction 30 

In recent decades, the populations of various animals, including birds, amphibians, insects, and 31 

mammals, have exhibited steep declines worldwide. While many decreases are due to habitat 32 

loss and overutilization, other unidentified processes threaten 48% of rapidly declining species 33 

and are driving species most quickly to extinction [1]. As biodiversity plays a critical role in 34 

many aspects, well-designed monitoring programs provide a basis for identifying the species, 35 

sites and threats of most significant concern. Such monitoring programs also provide reliable 36 

tools when evaluating the integrity of ecosystems and their responses to disturbances, assessing 37 

progress in efforts to conserve biodiversity, and measuring the success of actions taken to 38 

preserve or recover biodiversity. However, manual observation remains limited and challenging 39 

in many scenarios, especially in the areas that are difficult to access physically or when the focus 40 

is to study animals' night‐time behavior. In such scenarios, passive acoustic monitoring is highly 41 

appropriate, as many birds, including rare species, are most readily detectable by their sounds, 42 

often more so than by vision. With modern remote monitoring stations, it can continuously 43 

monitor large remote areas for avian community composition and tracking migratory and 44 

seasonal changes in populations ([2] – [7]). 45 

Earlier applications that have employed such technology either performed automatic recording 46 

but relied on manual analysis of sound recordings ([8], [9]) or were based on low‐complexity 47 
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signal processing such as template matching ([10], [11]), feature extraction ([12]), or traditional 48 

machine learning methods ([13], [14]).  49 

With the constant increase in computing power and the development of more efficient codes, 50 

high-performance computing helps the extremely fast growth of deep learning in recent years, 51 

which has been shown to outperform previous state-of-the-art techniques in several tasks. Deep 52 

learning has fueled great strides in a variety of computer vision problems, and in particular, 53 

Convolutional Neural Networks (CNN) have demonstrated great potential and success in image 54 

classification tasks and thus drawn much attention in constructing the automatic bird sound 55 

classification systems. Some popular CNN architectures applied to bioacoustics classification 56 

include AlexNet [15], LeNet-5 [16], VGG16 [17], ResNet50 [18], among others. 57 

In this study, two regionally rare species were chosen: Yellow-vented warbler (Phylloscopus 58 

cantator) and Rufous-throated wren-babbler (Spelaeornis caudatus). The Rufous-throated Wren 59 

Babbler is a very rare bird that has an extremely limited range in Nepal. The species is Near 60 

Threatened globally; it is listed within Nepal as a Critically Endangered species on a national 61 

level ([19], [20]). The nationally endangered Yellow-vented Warbler can be found in the East of 62 

Nepal. It is recorded between 75m and 1525m in a few locations, including Makalu Barun 63 

National Park [20].  These species provided a proof of concept demonstrating that with limited 64 

training samples, deep learning models can classify rare species calls. 65 

As a research project of Future Generations University, this project brings expertise in 66 

community development with decades-long global partnerships that ensure long-term data 67 

collection and research permissions, data labeling, and collaboration for sustainable, just, and 68 

lasting climate action. Protecting 100,000,000 acres of land, Future Generations leadership in 69 
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community-based conservation established multiple national parks across Asia. Over the past 27 70 

years, the University has employed key indicators (quick, easy-to-use measurements), shaped to 71 

fit specific communities' contexts, to empower community members to measure change over 72 

time for themselves. This project is unique in its commitment to community engagement.  73 

II. Data collection and pre-processing  74 

Audio data were collected from 8 different sites along an elevational transect in the mountains of 75 

Makalu Barun National Park, Nepal, between 2018 and 2019. Audios were recorded into wav 76 

format using Song Meter SM4 Acoustic Recorders (Wildlife Acoustics) at a sampling rate of 77 

48kHz and 24-bit rate, and recorders were programmed to record 5-minute audio every 15 minutes 78 

24 hours per day.  79 

The training and test datasets were initially generated using pattern recognition clustering software 80 

(Kaleidoscope Pro Analysis Software, Wildlife Acoustics [21]), and local avian experts 81 

subsequently analyzed clusters in Nepal to identify calls from the two species of interest, Yellow-82 

vented warbler (Phylloscopus cantator) and Rufous-throated wren-babbler (Spelaeornis 83 

caudatus). A target of 100+ positive detections for each species and 300+ negative detections (ex. 84 

rain wind river, insects, other bird species, etc.) were set as the minimum amount of data necessary 85 

for model training and development. The positive and negative samples were used as input to train 86 

CNN models. Spectrogram images containing a target positive or negative sample were 87 

standardized using a 4-second audio clip beginning at each detection's start-time.  88 

Spectrograms were extracted from audio files (with NFFT = 256, Hanning window) using Python 89 

3.6 and then resized to 224 by 224 pixels with RGB channels and stored as color PNG images (see 90 

Fig. 1 for example). The color spectrograms were the input for the machine learning model, and 91 
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the corresponding single-species labels for each image (i.e. species present (positive) or absent 92 

(negative)) were used as the ground truth data for training and evaluating the classification model.  93 

      94 

       95 

       96 

Fig. 1. Sample spectrograms for 4-second audio recordings. First row: calls from the species Phylloscopus 97 

cantator; Second row: calls from the species Spelaeornis caudatus; Third row from left to right: rain 98 

background, river background, unidentified species. 99 

III. Approaches 100 

A. Transfer learning and fine-tuning with a pre-trained CNN model 101 

Here the neural network model ResNet50 was applied to classify the calls of the 2 bird species. 102 

This ResNet50 CNN architecture is a variant of ResNet model which has 48 Convolution layers 103 

along with 1 Max Pooling and 1 Average Pooling layer. It begins with the RGB images (size 224 104 



6 
 
 

× 224 × 3) as input and performs the initial convolution and max-pooling using 7×7 and 3×3 105 

kernel sizes, respectively. Afterward, it stacks a series of residual blocks. With the skip 106 

connection of residual blocks, it allows the model to propagate larger gradients to initial layers. 107 

These layers are able to learn as fast as the final layers, in order to train deeper networks. Finally, 108 

the network has an average pooling layer, followed by a fully connected layer. When training the 109 

ResNet50 model, the Adam optimizer algorithm was applied, and an initial learning rate of 1e-4 110 

with a decay factor of 1e-7. 111 

In the context of deep learning, most models include millions of parameters. ResNet50, for 112 

example, has 23 million parameters. To train such complex models, it typically requires an 113 

extensive dataset to achieve an optimal parameter configuration. However, in practice it may be 114 

very difficult to collect large amounts of labeled data, especially if a species rarely calls or if the 115 

species is endangered and there are few individuals. Besides, using experts to obtain a large 116 

number of labeled samples in acoustics is an expensive and time-consuming endeavor. Given 117 

this scenario, transfer learning with fine-tuning [22] is a useful technique when there is only a 118 

small number of labeled data available. 119 

Transfer learning is a machine learning technique where a model trained on one task (or domain) 120 

is re-purposed on a second related task (or domain). Pre-trained models are usually shared in the 121 

form of the millions of parameters/weights the model achieved while being trained to an optimal 122 

state. In this study, the model weights were initially trained on ImageNet [23] dataset with 1000 123 

classes of objects, but their pre-trained weights can be leveraged by a different task or domain 124 

[24]. This approach is effective because the source model was trained on a large number of 125 

images and made predictions on a relatively large number of classes. In turn, it required the 126 
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model to extract distinct features from images in order to perform well. With fine-tuning, some 127 

layers are frozen from the pre-trained model, and it is sufficient to train the last several layers 128 

only, instead of having to train the whole model with random initialization of all parameters.  129 

In this study, the model design included pre-trained weights of ResNet50 and fine-tuned 130 

parameters, adding a fully connected layer, a dropout layer and an output layer. 131 

B. K-Fold Cross-Validation 132 

In this dataset, there are only a few hundreds of detected calls for the two target species, 133 

Phylloscopus cantator and Spelaeornis caudatus, that include different stereotypes of calls from 134 

each species. By partitioning the available data into three sets (training, validation and testing), 135 

we drastically reduce the number of samples which can be used for learning the model, and the 136 

results that depend on a particular random choice for the three sets are not stable. A solution to 137 

this problem is a procedure called K-fold cross-validation, which generally results in a less 138 

biased model compared to other methods. With this procedure, it ensures every observation from 139 

the original dataset has the chance of appearing in the training and test set. This is one of the best 140 

approaches if we have limited input data. This method follows the below steps: 141 

Step 1: Split the entire data randomly into K folds (here, we use K=5). 142 

Step 2: Fit the model (training and validation) using the K - 1 (K minus 1) folds and test the 143 

model using the remaining Kth fold. Note down the scores/errors. 144 

Step 3: Repeat this process until every K-fold serves as the test set. Then take the average of all 145 

recorded scores. That will be the performance metric for the model. 146 

C. Data Augmentation 147 
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While many deep neural network models have parameters in the order of millions, they are 148 

heavily reliant on big data to avoid overfitting. Unfortunately, in many real-world applications, 149 

the amount of data that can be used for training is rather limited, either due to the huge manual 150 

efforts required to collect data, or due to the fact that it is almost impossible to acquire large 151 

amounts of data in some cases. As an effective data-space solution to the problem of limited 152 

data, data augmentation encompasses a suite of techniques that enhance the size and quality of 153 

training datasets such that better deep learning models can be built using them. 154 

Among various data augmentation methods for image processing, some basic ones include flips, 155 

rotations, shifts, noise injections, color space transformations, sharpening or blurring, and 156 

random erasing or cropping. Specifically, for audio recordings, there are methods such as time-157 

stretching, pitch shifting, and mixing multiple audios [25]. Beyond them, there are more 158 

advanced techniques, for example, generative adversarial network (GAN)-based methods [26], 159 

which can be used to generate synthetic images. 160 

For this model implementation, basic techniques were applied to increase the size of data that 161 

can be used for model training: rotation (up to 5 degrees), shifting (width and height shifting up 162 

to 10% of the original spectrogram), and cropping. 163 

Another effective method we adopted to boost the training data size is to use spectrograms with 164 

smaller time-windows. While the detected calls for the two regionally rare species, Phylloscopus 165 

cantator and Spelaeornis caudatus, usually last for 2 seconds or longer (see Fig. 1. as an 166 

example), our baseline model was fit based on spectrograms generated from a 4-second time 167 

window. In order to boost the size of training data, we break down each 4-second detection into 168 

3 shorter detections, where each detection lasts for 2 seconds (that is, to create 3 spectrograms 169 
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starting at second 0, 1, and 2, respectively, from each original 4-second detection). Even though 170 

breaking down spectrograms into 2-second windows may not include one complete call within 171 

each spectrogram and may bring some noisy labels during model training, but with this 172 

implementation, the size of data available for training tripled. 173 

D. Model Training 174 

Our manually validated dataset consists of 195 positive detections for Phylloscopus cantator, 175 

320 positive detections for Spelaeornis caudatus, and 1060 negative detections composed of 176 

various types of noises (rain, wind, river, bugs, other bird species, etc.), where each detection 177 

lasts for 4 seconds. 178 

Finding sufficient clips of exemplar training data from the field recordings was challenging, 179 

because of call volume variations, overlapping calls with other species, and background noises.  180 

In addition, to distinguish a species with multiple and varying calls, it was also essential and 181 

challenging to determine other species that had similar calls to the target species and label these 182 

close calls as negative training data. Particularly, for the target species Spelaeornis caudatus, 183 

there are two other species that have acoustically similar calls (Fig. 2). 184 

Target species Close call Species #1 Close call Species #2 

Spelaeornis caudatus 

 

Phylloscopus reguloides 

 

 

Pnoepyga albiventer 
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Fig. 2. Spectrogram of Spelaeornis caudatus and two other species (Phylloscopus reguloides and 185 

Pnoepyga albiventer) with acoustically similar calls. 186 

After scoring, all the false positives in the training data were verified by experts and correctly 187 

labeled to retrain the model after the first round of model training. External training data 188 

(exemplar calls manually verified from xeno-canto.org) were added to supplement the project's 189 

data. 190 

IV. Results 191 

A. Model Performance 192 

Three key metrics are reported to evaluate and compare the performance of the model on the 193 

testing data set: 1) sensitivity (true positive rate, recall); 2) specificity (true negative rate), and 3) 194 

area under a curve (AUC). Sensitivity measures the proportion of true positives that were 195 

identified correctly; and specificity measures the proportion of true negatives that were identified 196 

correctly . While sensitivity and specificity are dependent on the choice of threshold score, the 197 

area under a curve (AUC) provides an aggregate measure of performance across all possible 198 

classification thresholds. It is not affected by the class imbalance. 199 

TABLE I: Classification results (sensitivity, specificity, and AUC) for both target species by 200 

each CNN model. The results are based on the average score of conducting 5-fold cross-201 

validation, with a neutral threshold score 0.5. 202 

 203 

 204 
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 205 

Species CNN Model Description Sensitivity 

(%) 

Specificity 

(%) 

AUC 

(%) 

Phylloscopus 

cantator 

based on 4-second spectrograms, no data 

augmentation 

86.15 98.91 98.62 

based on 2-second spectrograms, no data 

augmentation 

94.92 99.92 99.02 

based on 2-second spectrograms, with data 

augmentation 

95.94 99.92 99.58 

Spelaeornis 

caudatus 

based on 4-second spectrograms, no data 

augmentation 

53.12 94.82 91.50 

based on 2-second spectrograms, no data 

augmentation 

78.46 95.96 97.05 

based on 2-second spectrograms, with data 

augmentation 

90.15 93.92 97.85 

 206 

For both species Phylloscopus cantator and Spelaeornis caudatus, the model based on 2-second 207 

spectrograms performed significantly better, especially sensitivity, compared to the model based 208 

on 4-second spectrograms. Using data augmentation made further improvement for the model 209 

based on 2-second spectrograms (Table I). The sensitivity for classifying the species Spelaeornis 210 
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caudatus was not as good as that of the model classifying the species Phylloscopus cantator, and 211 

resulted in about 10% of detections that were misclassified as negative. A closer investigation of 212 

the data revealed that the labeled calls for Spelaeornis caudatus included detections with various 213 

levels of clarity, different call stereotypes, and maybe some incorrectly labeled detections. It 214 

appears that the neural network model did not find enough commonalities among these detected 215 

calls to make correct classification. Some examples of spectrograms are shown in Fig. 3. 216 

217 
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Fig. 3. Examples of spectrograms for 4-second audio recordings with detected calls from the species 218 

Spelaeornis caudatus. Row 1-2: examples of detections that the model can correctly classify; Row 3-4: 219 

examples of detections that the model wrongly classified as "no call".  220 

B. Scoring on Unlabeled Data 221 

The model was run using over one year of data with dates ranging from 3/2018 to 7/2019 using 222 

data from three stations in Makalu Barun National Park around the elevations where the target 223 

species were expected - Hinju Camp (elevation 1820 m), Deurali danda (elevation 2100 m), and 224 

Tutin Camp (elevation 2300 m). 225 

In order for results to be analyzed, a threshold needs to be chosen for what probability will be 226 

counted as the presence of the species. Table II shows the number of detected calls for three 227 

sample threshold probability ranges (clip numbers rounded to the nearest ten). While the model 228 

predicts the probability of target species calls for each extracted spectrogram from the 229 

corresponding audio clip, the probability itself does not give a definite answer of 230 

presence/absence of species calls. As our next step, we will send those results to the local 231 

ecologists and conduct output validation by sampling spectrograms with different predicted 232 

probability ranges and then choosing the optimal threshold. 233 

Table II. Number of model results returned for three selected probability ranges. 234 

Species Predicted Probability Range # of 2-sec clips ML results 

show species presence 

Spelaeornis caudatus 0.99-1 240,300 clips 

0.7-1 982,230 clips 
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0.5-1 1,247,170 clips 

Phylloscopus cantator 0.99-1 51,550 clips 

0.7-1 189,380 clips 

0.5-1 237,260 clips 

 235 

Visualization of these big data results is a helpful tool for data analysis, as well as further 236 

verification and spot checking of results. Utilizing Plotly Dash (https://plotly.com/dash/), a web 237 

interface was created to visualize daily and hourly count (Fig. 4), with interactive options to filter 238 

results by species, predicted probability range (threshold), model iteration, and station.  239 

 240 

https://plotly.com/dash/
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Fig. 4. Web interface that can visualize the number of detected calls in multiple monitoring stations over 241 

time for certain targeted species. The interface allows the users to choose different probability ranges 242 

from model predictions. 243 

V. Discussion 244 

In this study, we demonstrate how deep convolutional neural networks (CNN) and transfer 245 

learning can achieve higher accuracy for the classification of calls from the targeted rare species 246 

with limited training data. We provide both methodological and practical contributions by testing 247 

the performance of a machine learning approach to augment the manual validation process, 248 

which is time-consuming and labor-intensive. 249 

With limited labeled data, especially for rare species, the CNN model performs reasonably well. 250 

While transfer learning leverages the learning from one task which is generally trained on a large 251 

size dataset, it does not require learning from scratch for the new task, which is motivated by the 252 

observation that the earlier features of a CNN model contain more generic features (e.g. edge 253 

detectors or color blob detectors) that should be useful for many tasks. In this study, we used a 254 

pre-trained ResNet50 model to implement transfer learning with fine-tunings, and there are other 255 

options of pre-trained CNN models, such as VGG16 or DenseNet ([27]), that can be used to 256 

achieve comparable results. Except for these pre-trained models, which are based on ImageNet, 257 

transferring learned knowledge from networks trained on audio data (for example, SoundNet 258 

([28]) or SincNet ([29])) is another reasonable choice. 259 

Data augmentation is another effective way to increase the training sample size in order to 260 

achieve better classification performance. Beyond the ones that we used in our model, there are 261 
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more complicated data augmentation methods such as adding or removing noises, image 262 

sharpening or masking, changing audio loudness, and audio mixing, 263 

Finally, the methodology and implementation framework presented in this study can be easily 264 

adopted by other similar bioacoustics applications, where target signals require manual 265 

validation. This study sets initial steps for placing deep learning CNN analysis as the natural 266 

evolution of analysis methods for passive acoustic monitoring data. 267 

VI. Further Research 268 

In order for the results to be accurately used for species presence survey data, more iterations of 269 

label verification and model retraining are needed. The next step for this research is to establish a 270 

pipeline for verifying the ML results, determining when to re-run the model with additional 271 

verified training data, and ultimately choosing a threshold per species that represents accurate 272 

species presence survey data. 273 

One tool that will aid this verification is being added to the interface and will be tested with 274 

further research. 10% stratified sample of the results will be returned for experts to spot check 275 

and compare with model analysis in order to determine if the model needs to be retrained or if 276 

the results are accurate for species presence research. A framework for this verification is 277 

essential because each species call will require different amounts of training data and/or a 278 

different threshold that returns accurate results. 279 
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